
Hans D. Brenner
Wolfgang Boker
Ruth Genner
(Editors)

Towards a Comprehensive
Therapy for Schizophrenia

Stadt- und Universitats· 1"'\
bibliothek Bern ~

1997//1/1 B'VI If

Hogrefe & Huber Publishers
Seattle Toronto- Bern- Gottingen



Non-Linearity and Chaos in the Course
of Psychoses - An Empirically Based
Classification of Dynamics
Wolfgang Tschacher, Christian Scheier and Elisabeth Aebi

Summary

The paths of psychoses (mainly schizophrenic) were examined on the base of daily ratings
of psychoticity in 14 long-term patients. Measures of non-linear dynamical properties of
the disease process can be derived from these time series. We applied forecasting methods
combined with statistical surrogate data tests and Lyapunov exponents. With this method­
ology, we assessed the class of dynamics expressed in the course of symptoms: eight out
of fourteen patients present non-linear courses, of which 6 show signs of chaoticity; four
time series can be modelled linearly as auto-regressive processes; two cases are classified
as random. Thus, a considerable subset ofour cases seem corroborative of Ciompi's "chaos
theory of schizophrenia" which states that productive symptoms may be generated by a
chaotic dynamical system of few non-linearly coupled variables. Yet, on the grounds of
the present sample, no clear relation between phenomenological descriptors of patients and
their dynamical classifications can be established.

Clinical observation gives ample evidence of how heterogeneous the courses
of psychotic illnesses can be in the medium and long run. Classical descrip­
tions of schizophrenia in psychiatry since Kraepelin and Bleuler therefore
have commonly emphasised the processual character of this disorder. From
this tradition a bundle of theories and models emerged which set out to clas­
sify the paths of psychosis (Ciompi, 1988; Strauss et al., 1985). But this tra­
dition of studying the psychotic process is to a large extent either tied to qual­
itative-descriptive phenomenology or to cross-sectional empirical research.
In their overview Hafner & Maurer (1991, p. 154) state that the field is still
suffering from an "extreme shortcoming of longitudinal research."

In this paper we consider psychotic symptomatology from a longitudinal
perspective by making use of empirical methods of time series analysis and
modelling; this perspective is based on dynamical systems theory. Our start­
ing point will be a discussion of psychoses as "dynamical disorders": we sug-



gest that psychotic and non-psychotic behaviour can essentially be distin­
guished by the kind of dynamical regime or equilibrium realised. In the in­
terdisciplinary. field of dynamics two focal concepts. are currently discussed
(the phenomenon of self-organisation and the regime "deterministic chaos");
the relevance of either concept for psychiatric research will be highlighted.
Finally, we will present the results of an investigation of empirical data on
the paths of psychoses; this is accomplished by nonlinear techniques which
have become available recently.

It seems inadequate to label psychosis per se as "chaotic," "nonlinear" or
by any such attribute; even the narrower concept of schizophrenia probably
represents different heterogeneous types of disorders (Andreasen. & Olsen;
1982). Additionally, schizophrenia may manifest itself differently at each
systems level. In the context of our study we see the option of statistically
assessing the course of each single patient by the method of time series anal­
ysis; this makes it an idiographic study as claimed by phenomenology. We
also restrict ourselves to statements about a specific systems level (i. e., the
level of psychopathological time courses of 200 to 800 days); under these
constraints we think it is possible to differentiate types ofpsychotic dynamics
on an empirical basis. Finally we will compare this differentiation with phe­
nomenological and diagnostic descriptions of our cases.

The Concept of Dynamical Diseases

The concept of dynamical diseases (Glass & Mackey, 1988) is based on the
axiom that psyche, body, and social world may be subdivided into systems,
which themselves consist of interacting components (cf. Bunge, 1979). In the
respective basic disciplines psychology, biology and sociology this axiom has
been elaborated especially by cybernetics. Recently the various attributes of
complex systems (Nicolis & Prigogine, 1977) render the systems view a va­
luable heuristic principle especially in the field of psychiatry (Schiepek&
Tschacher, 1995). In its application to psychosocial systems, however, the
question of which components make up the system is far from trivial (Tscha­
cher, 1990). Pragmatically we assume that researchers' biases (e. g., conven­
tions of scientific disciplines) participate in determining the components.
Thus, a system in psychiatry is never entirely the reflection of the objective
world, but must also be viewed as the construction of an observer (Boker &
Brenner, this book).

The interaction of components results in a dynamics characteristic of the
system. In mental, social and biological systems this dynamics is often a state
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of equilibrium (in cybernetics: aloop with negative feedback). But the coun­
terpart to homeostatic dynamics is also found: in random, turbulent or unpre­
dictable behaviour (e. g., positive feedback amplifying small deviations).
Whatever dynamics a concrete system may exhibit, the concept of dynamical
diseases assumes it to be essential for any dysfunction that the interaction of
system components is altered. Pathological behaviour evolves out of healthy
behaviour by way of a bifurcation (a phase transition between two different
dynamical regimes, cf. an der Heiden, 1992). A bifurcation is also found if
an unordered complex system spontaneously evolves into an ordered state;
this emergent phenomenon of pattern formation is studied in self-organisation
theory and synergetics (Haken, 1983).

The dynamical concept of disorder prepares for no dichotomous judgement
between "sick" and "healthy," but assesses "illness" to be merely a different
way of functioning in the same system. Therefore, no ontological quality is
ascribed to illness (disorder), rather, it is seen as a process deviating from
normal. Additionally in complex systems there may exist a tendency to fixate
recurring or enduring dynamics morphologically, which explains the increas­
ing stability of chronic states (cf. Bischof, 1990). Insofar dynamical diseases
may secondarily become "imprinted" into a substrate and manifest them­
selves in structural changes.

Put formally, we may start from stochastic dynamical systems. They can
be symbolized by a differential equation with a stochastic term F(t) describ­
ing external fluctuations that act on the system:

x'(t) = N(x(t), ~) + F(t) (1)

x(t) is a vector of the state variables of the system dependent of time t (state
variables are all m phenomenological descriptors of the system, thus spanning
a state space of dimension m). N is the (linear or nonlinear) function that
determines the temporal change of state variables. The function itselfdepends
on the environment of the system expressed by a set of control parameters ~.

Equation (1) lends itself to the following simple classification of qualita­
tively distinguishable dynamical systems:

(a) F(t) > > N(x(t),~): If the noise or random term is much larger than the
deterministic part of the equation, system (1) becomes a more or less pure
stochastic process. A special case is the temporally weighted noise of a
moving average (MA) process.

(b) F(t) < < N(x(t),~): We get a deterministic system capable of producing
equilibrium states ("attractors"). Examples of attractors are point attrac­
tors (the equilibrium is a constant, e. g., the mood of a well-balanced per­
son); periodical attractors are oscillating equilibria: for instance the mood
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of some manic-depressive persons. Point attractors can be realised by
systems with linear or nonlinear N, while all equilibria of higher com­
plexity necessarily stem from nonlinear systems. The class of chaotic at­
tractors has been widely discussed in recent years and seems relevant for
many applications. Chaotic behaviour eludes long term forecasting by
showing turbulent, mixing behaviour (Rossler, 1976; Abraham & Shaw,
1984), which is hardly captured by a common notion of homeostasis; it
can neverthelessbe shown that these attractors must be counted among
those dynamical structures that - all in all - increase order.

(c) N(x(t),!l)IF(t) = R: A combination of both former classes is predominant
in empirical research, namely "noisy" deterministic systems (in our data
with a signal-to-noise ratio of 9 > R > 0.6). Here a further distinction is
close at hand:

(Cl) N is nonlinear. Nonlinear dynamical systems are prerequisite for chaos
and self-organisation.

(cz) N is linear. The time series may then be modelled by an autoregressive
(AR) process.

Dynamics and Psychodynamics

We have now reached a point where we can put forward our content hypoth­
esis: psychotic episodes may be understood as manifestations of a chaotic
system. Clues to this point are given in studies of Ciompi and coworkers
(Ciompi et aI., 1992). Schmid (1991) points to the consequences of scale in­
variance (an attribute of chaotic fractal attractors) for a multi-level approach
to schizophrenia. The significance of the dynamical finding (chaotic process
(CI) vs. noise (a» for the understanding of the underlying (psychobiosocial)
system is outlined in Steitz et al. (1992); elaborating this former formulation
we hold the following assignment to be useful:

Pure stochastic systems (a), whose time series do not show serial structure,
possess high sensitivity for fluctuating environmental stimuli. In our study
this poses a fundamental null hypothesis since environmental influences on
psychoticity are not controlled for in our field data (rigorous control is pos­
sible only under experimental circumstances and as such incompatible with
the acquisition of long and relevant time series). (a)-systems are suggested
by behavioural theories (operant and classical conditioning) which take be­
haviour as largely under the control of external stimuli. In this case the dy­
namics of a system does not primarily result from its intrinsic properties.
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Table 1; Patient population studied according to demographic and disorder-related criteria. Grouping was achieved by cluster analysis of the
variables "vocational training", "attribution (of the cause of the disorder)", "high-EE" (expressed emotions in family), "social relations" (to
persons outside the ward).

Patient age vocational diagnosis extent of attribution rehabili- high-EE social
(sex) training psychopath. tation relations

56 (m) 18 drop-out schizophrenia large good yes no
54(t) 32 university schizophrenia very large bad yes no
58(t) 26 completed borderline large bad yes no
51(t) 23 completed schizophrenia large bad yes no
13 (t) 23 drop-out schizophrenia large good yes no

53 (m) 24 completed schizophrenia large extrinsic good no no
47 (t) 20 drop-out schizophrenia very large extrinsic bad no no
24(m) 27 drop-out borderline large extrinsic good yes yes
41 (t) 18 none adolesc. psychosis small extrinsic good yes yes
62(m) 20 completed schizoaffective moderate extrinsic good no yes

57 (t) 26 drop-out schizophrenia large intrinsic bad no no
34 (m) 25 drop-out schizophrenia large extrinsic bad no no
48(t) 37 completed schizophrenia large intrinsic good no yes
19 (t) 29 completed schizophrenia large intrinsic good no yes



Table 2. Scale for daily ratings ofpsychotic derealisation (psychoticity).

I: relaxed, well-balanced, calm
2: unsteady, anxious, nervous, irritated
3: restless, tense, loaded, aggressive

or
depressive, cross, down-hearted, sad
or
ambivalent, irresolute

4: intimidated, agitated, confused, labile, loose associations
5: phenomena of derealisation and/or depersonalisation: surroundings or oneself

appear unreal, strange, changed. Thought disturbance: absent-mindedness,
pressure of thought, breaks of thought

6: ideas of reference, delusional projections, delusions: incorrigible convictions of
oneself and the world contradict reality and experiences of others

7: hallucinations: perceptual experience without objective source of stimulation.
Inexistent stimuli are heard, seen, felt, smelled. Catatonic phenomena: motor
blockage, compulsive posture, stereotypy, mannerism, movement storm

Chaotic dynamics (cj), on the other hand, point to the existence of a inter­
nally controlled, low-dimensional system unfolding relatively autonomously
from environmental fluctuations. Empirical evidence of (Cl)-systems would
be a validation of the dynamical disease concept for psychoses. In a complex
network given by a person and all of his numerous cognitive, social, and bi­
ological interactions, we understand the emergence ofa low-dimensional sys-

Figure 1. Plot of a time series (patient 47) of daily psychoticity ratings over a period of
572 days.
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tern as a process of self-organisation: In the context ofpsychotherapy theories
such systems seem compatible with psychoanalytical, cognitive, or systemic
theories.

Methods

Subjects

We studied patients treated at the Soteria Bern; as a small therapeutic resi­
dentialcommunity, specialised for persons experiencing a first psychotic
manifestation, this is based on ideas of milieu therapy and affect logic (Ciom­
pi, 1991; Aebiet al., 1993 a). The prerequisite for inclusion in our sample was
that a patient's daily manifestation of psychotic symptomatology could be
observed almost completely for a long enough period of time (at least 200
days). Thus, the subjects did not constitute a random sample, but a population
of long-stay Soteria patients.

Patients were assessed by two independent observers for their phenomeno­
logical characteristics, which were rated on the basis ofdetailed personal and
interactional knowledge of the patients. The description of 14 patients is pre­
sented in Table 1.

Time Series Data

The longitudinal course was mapped by the daily rating of a patient's psy­
choticity by Soteria staff members. A seven-point scale was used,as descri­
bed in Aebi et al. (1993 b, see Table 2). The course of psychotic derealisation
measured with this scale was the focus of our interest. The state vector x' (t)
after equation (1) therefore contains only one (global) variable. An example
of a time series of a patient is depicted in Figure 1;

Forecasting Algorithm

The methodology of time series. analysis has progressed considerably in re­
cent years; linear (ARIMA-) models (Box & Jenkins, 1976), which have been
in use for several decades, are more and more accompanied by nonlinear mo­
dels (Tong, 1990). The rapid extension of nonlinear methods is important,
especially in the context of innovative system theoretical approaches as self-
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organisation theory and chaos theory, which start out from nonlinear interac­
tions within a system.

Our data sets are characterised by relatively short time series lengths, few
steps of the scales; and probably high measurement error, which altogether is
typical for psychosocial data acquisition. Therefore, methods that try to esti­
mate the dimensionality of fractal attractors fail to be applicable (Steitz et al.,
1992). For our study we decided to implement the nonlinear forecasting al­
gorithm (NFA) proposed by Sugihara and May (1991). It can be shown that
the NFA is robust concerning the restraints for data quality just mentioned
(Scheier & Tschacher, 1994).

We continue with a short description of the NFA. First, the time series is
divided into two halves; the first half is a "library" that can generate forecasts.
In order to do that, the state space (or "phase space") of embedding dimension
m is reconstructed using the method of Takens (1981). Each state of the sys­
tem is described as one point in state space. Forecasting temporal develop­
ment thus addresses the question of which point in state space is next ap­
proached by the system. On the grounds of axioms of dynamical systems the­
ory (e.g., Rosen, 1970) it may be assumed that neighbouring points
("neighbours") in state space may change in a similar way if the system is
deterministic. .

For any time series measurement documented in our patients we may fore­
cast the future development of any given state. The accuracy of this forecast
may be defined as the correlation of expected development (extrapolated on
the basis of next neighbours in the "library" data) with actual development
(as realised in the second half of the time series). Figure 2 charts such corre­
lations derived via NFA from the data set of Figure 1. As can be seen, the
correlation value for time step 1 ("next day") is around 0.7. A forecasting
period of five days, however, no longer yields a valid prognosis (the correla­
tion has decreased to about 0.15 at an embedding dimension of m =3).

The change of forecasting accuracy for increasing periods of time is char­
acteristic for the kind of time series that has been mapped - we achieve some
"fingerprint" of the system's dynamics. A linear autoregressive system, for
instance, yields no decrease of correlations, but a constant positive value of
forecasting accuracy; a random generator in a computer (or a noisy system,
respectively) shows no correlations deviating from zero; a deterministic-cha­
otic system acts according to sensitive dependence on initial conditions (the
definition of chaos: Berge et al., 1984) by giving a trajectory of prognoses
that resembles the one depicted in Figure 3: short-term predictability with
non-predictability in the longer run is a basic sign of deterministic chaos.
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Figure 2. Courses of forecasting accuracies computed with the Sugihara-May algorithm
(NFA), embedding dimensions from 1 to 10, based on the data of Figure 1.
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Surrogate Data Method

We use the method of surrogate data in order to evaluate the statistical sig­
nificance or our time series classification with the NFA. The method is des­
cribed at length in Theiler et al. (1992) and Scheier and Tschacher (1994), so
that we may introduce it here by a short example: first we compute a discrim­
inating statistic with the forecasting method NFA, say the forecasting accu­
racy for the period "one day." This value in the times series of Figure 2is
about r =0.70 (see Fig.3). Then we determine the respective values for a
number of surrogate data (i. e., artificially generated "time series," that are
identical with the measured data according to mean, variance and length); in
this way we gain a distribution of discriminating statistics. Thus we can test
if the empirical time series can be discriminated from a population of surro­
gate data.

Tests were employed in two ways: first, we tested if empirical time series
can be predicted better than random; secondly, we fit autoregressive models
to the original data, used the various realisations of models as surrogate data
sets and examined if empirical data can be forecast better than their linear
models. Thus, the surrogate data method allows us to test two null hypothe­
ses:

Null hypothesis (1): The time series behaves like a string of random num­
bers as far as forecastability is concerned, i. e., is an (a)-system according to
the classification given above. Here surrogates can be generated by scram­
bling the original data: time series length, mean, and standard deviation re­
main the same, but serial dependency is eliminated.

Null hypothesis (2): The time series to be examined behaves like a linear
autoregressive process, is a (C2)-system. Surrogate data in this test are differ­
ent realisations of an AR(l) model of the time series.

The rejection of both null hypotheses indicates that a certain time series
contains nonrandom serial structure and is nonlinear.

Lyapunov Exponents

These "characteristic exponents" count among the ergodic measures of ady­
namical system (Eckmann & Ruelle, 1985), i. e., signify invariants ofsystems
dynamics. The largest Lyapunov exponent is an indicator for divergence of
neighbouring trajectories in state space. Divergence (> 0) points to entropy
production and sensitivedependence from initial conditions, in other words,
deterministic chaos; Calculating is sensible if the testing of null hypotheses
(1) and (2) shows that the course of a psychosis can be understood as a non-
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linear (crj-system. then gives an indication of whether there is nonlinearity
in the sense of deterministic chaos. We used the algorithm after Wolf et al.
(1985).

Cluster Analyses

Finally we: clustered the various descriptors of 14 empirical time series in
order to find out about the subgroups in these cases. We used hierarchical
cluster analyses with appropriate correlation coefficients (Pearson-r for the
NFA- and surrogate data; Goodman-Kruskal-Gamma as the distance metric
for phenomenological data) (Wilkinson, 1989). For analysing the latter data
the ratings had to be quantified - we therefore "translated" the ordinal scales
(e. g., the scale "attribution" was quantified in this way: intrinsic =1; extrinsic
=-1).

Results

Different groups of psychotic courses can already be seen in visual inspection
as soon as the 14 data sets are assessed by the NFA. Two courses in each
group, respectively, are presented in Figure 4. The first group of courses
yields forecasting curves that resemble those ofchaotic-deterministic systems
(denoted as "nonlinear" in the legend of Figure 4). The discussion of the pop­
ulation dynamical time series in Sugihara and May (1991) corresponds to our
finding of a variable amount of noise in our nonlinear time series, which re­
duces one-day forecasts to values of between 0.92 (approx. 10% noise) and
0.4 (approx. 60% noise). These time series are probably (crj-systems. Further
time series can be characterised as random data sets ((a)-systems, "noise" in
Fig.4) or autoregressive processes ((C2)-systems,"linear"). This last group of
psychoses shows no significant change in forecasting accuracy over time.

These results are supported by the significance tests on the null hypotheses
of the surrogate data method. In Table 2 we listed the forecasting accuracies
after Sugihara and May for the psychoses time series and the effect measures
for null hypotheses (1) and (2). The table shows that eight out of fourteen
patients (57%) have nonlinear dynamics. Four time series are best modelled
as autoregressive linear processes. Two cases are classified as random. The
results of significance tests are summarised under the heading "model" in
Table 2.
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Table 3. Results of the non-linear forecasting method NFA and related significance tests.
"Forecasting accuracy": the degree of predictability of a time series (maximum NFA corre­
lation between forecast one day ahead and actual data); "forecasting decline": mean forecast­
ing accuracy one day ahead minus mean forecasting accuracy five days ahead; "I": value of
the largest Lyapunov exponent; "Ho(l)": noise effect measure from test of the first null
hypothesis; "Ho(2)": linearity effect measure (effect measures are values under a standard
normal distribution; e. g., 1.96 (*) is significant at a 5 % error level (both sides), 2.58 at the
I % level (**). This table is grouped according to cluster analysis of the data included in the
table.

62 0.790 0.422 0.024
54 0.696 0.229 0.014
24 0.852 0.408 0.002
51 0.920 0.288 0.142
13 0.661 0.269 0.104
47 0.698 0.344 0.27
34 0.479 0.325 0.004

48 0.472 0.364 0.02
56 0.578 0.206 0.372
19 0.671 0.326 0.243
53 0.757 0.45 0.214

58 0.358 0.123 0.117
41 0.477 0.113 0.002
57 0.174 0.005 0.021

12.22**
17.13**
11.97**
11.28**
10.84**
15.27**
11.64** .

2.72**
1.66
0.80

0.98
1.23
0.87
1.90
1.72
2.18*
2.28*

2.18*
6.66**
2.33**
3.42**

8.16**
4.91**
5.26**

AR
AR
AR
nl
AR (nl?)
nl
nl (AR?)

nl (AR?)
nl
nl
nl

nl
noise (nl?)
noise

The largest Lyapunov exponents are also given in Table 2; they support
our classification made on the basis of significances since nonlinear courses
show the highest values. Thus, at least in six cases we may assume that clear
signs of chaotic dynamics are present.

The values listed in Table 2 were analysed for internal structure by cluster
analysis. This resulted in three subgroups or clusters, which are graphically
indicated in the table by spaces. The three qualitatively distinguished types
of courses differentiated by the tests of the surrogate data method are sug­
gested by cluster analysis as well. The transitions between the groups of lin­
ear, nonlinear, and noisy systems are not clear-cut, though.

Phenomenological descriptors were quantified and then clustered in the
same manner. The result of this analysis is again illustrated by graphical
groupings in Table 1. We find that the three dynamical clusters are not con­
gruent with phenomenological clusters. This incompatibility also turns up in
correlational analyses (which cannot be detailed here): no significant corre­
lations are found to exist between phenomenological and quantitative-dynam...
ical variables in our 14 cases.

43



Discussion

In our opinion a number of central questions concerning schizophrenia and
psychosis research can only be answered by longitudinal studies. In this paper
we treated the basic question of which kind of dynamics reigns psychotic
courses: Is the unpredictable and seemingly turbulent sequence of daily
symptomatology the expression of a nonlinear system or does it simply reflect
environmental fluctuations? In the former case we might approach schizo­
phrenia and similar psychoses on a new foundation, i. e., by interpreting them
as dynamical diseases. A palette of methods and phenomena would then be
accessible to psychiatry, especially those developed and refined in the field
of dynamical science, of synergetics and chaos theory (Tschacher et al.,
1992). The validity of such an approach has recently been questioned for dif­
ferent reasons in the case of schizophrenic psychoses (as opposing bipolar
depression) (Emrich & Hohenschutz, 1992).

Our investigation actually presents clear evidence to the point that a larger
proportion of the psychoses we studied show nonlinear time courses. This is
the (to our knowledge) first time that the validity of the concept of dynamical
diseases could be established on statistical grounds in this important area of
psychopathology. Additionally, we succeeded in showing by the estimation
of Lyapunov exponents that most of the nonlinear courses may be interpreted
as expressions of low-dimensional chaos. This applies to at least six out of
eight nonlinear cases. Reversely, this interpretation is supported by the fact
that in linear and noisy data sets of our population exponents do not deviate
significantly from zero.

The context of the paths of psychopathology measured under field condi­
tions is influenced by many factors, i.e., is high-dimensional. We therefore
may assume that nonlinear dynamics is a reflection of the eigen-activity of
the psychobiological system "psychosis" which is embedded in the social mi­
lieu "Soteria.' We see this as an example of self-organisation, by which a
nonlinear chaotic system is contrasted against a complex environment by an
emergent process of pattern formation.

Phenomenology

Our studies have so far not resulted in a congruence between dynamical clus­
tering and groups gained by clinical phenomenological descriptions. The
most interesting chaotic courses (i.e., the (crj-systems with positive) are
mainly schizophrenic psychoses (in one case - Pt. 58 - a borderline disorder).
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But we find among these courses favourable and unfavourable paths of the
disorder as well; in respect to social interaction and insight into the illness
(attribution) the 58 "chaotic" patients are heterogeneous, too.

The same applies to a prognosis we held to be plausible a priori: the less
severe a psychosis (as in a borderline disorder), the noisier should be its course.
In other words, (a)-systems indicate environmentally contingent behaviour. Our
results do not readily support this idea: one of the (a)-systems is generated by a
schizophrenic disorder (see Pt. 57 in Table 1). Altogether we think that hypoth­
eses on the connection of dynamics and phenomenology are yet to be generated
by correlative-heuristic methods. General statements about this issue.must re­
main vague also due to the small number of cases available at the present time.

We might infer different conclusions from the fact that diagnoses of single
patients do not correspond well with dynamical parameters. On the one hand,
it is certainly desirable to accommodate diagnoses to path characteristics
more than is done in standard taxonomies. A more valid diagnostic system
should evolve in this way. On the other hand, our preliminary results encour­
age idiography which we see not as a method of hermeneutics alone. Each
person develops hislher own dynamics; psychoses are private and "creative"
phenomena, too, and therefore cannot be subsumed under a category com­
pletely (Scharfetter, 1990).

Outview

Time series data of the length reported here, especially with regular daily
ratings, are probably rare; they were acquired through observations under
special conditions in the course of years. Nevertheless, a number of optimi­
sations are desirable: if scales were more differentiated the course of psycho­
ses could be investigated more thoroughly and reliably (our research group
has therefore advanced to data acquisition with multiple time series in the
meantime). The topic of the interaction of different symptoms (say, positive
and negative symptoms) in schizophrenic disorders has stimulated various
incompatible theories which equally draw upon cross-sectional correlational
studies (Maurer & Hafner, 1989). We think it is evident that these theories
can be further discussed only by applying finer temporal resolution in the
sense of multiple time series analysis.

If - as now seems justified - we may count a considerable proportion of
psychoses among the dynamical disorders, cross-sectional research approach­
es even in large samples must in principle leave the essence of these psycho­
ses in the dark. We adopt the opinion of Strauss et al. (1985, p. 295): "... the
issues of sequence and patterns cannot be neglected indefinitely: they poten-
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tially hold answers for too many crucial questions." Beyond this, we think it
is time to advocate the theory of dynamical systems as a methodology to be
used within psychiatry and psychology. The consequences of a dynamical
view will be far-reaching; they not only concern the theory but also the ther­
apy of these disorders.

Chaos does not mean total uncontrollability (as is suggested by colloquial
language), but increasing unpredictability combined with short-term determi­
nation ..Thus, therapeutic intervention can contain. a moment of "chaos con­
trol": the time span between intervention and evaluation (which guides new
interventions) should be chosen accordingly (Mayer-Kress, 1992). The ques­
tion of dealing with complex systems may be approached also in the context
of synergetics; applications to clinical psychology are already being dis­
cussed (Kruse & Stadler, 1990; Schiepek et al., ·1992; Tschacher, 1990). Psy­
chosis is then understood as a dynamical pattern generated by a self-organis­
ingsystem (i.e., as the attractor of a dynamical disease); theoretically, there
are different ways of restituting the dynamics to non-psychotic regions of
state space. First, with gradual variation of the environment ("control param­
eters") the attributes of attractors change in an often discontinuous manner.
Second, if other "non-pathological" attractors continue to exist there is an
opportunity to drive the system into the bassins of these attractors by single
interventions or perturbations, i. e., even without changing control parame­
ters. Functioning in these attractors then has to be stabilised structurally in
the sense of relapse prevention.

In the future a more systematic and fundamental elaboration of a dynamical
intervention theory will have to be developed. We hope to have stimulated
such an endeavour with the present article.
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